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Abstract— Mounting evidence shows that Alzheimer’s
disease (AD) manifests the dysfunction of the brain network
much earlier before the onset of clinical symptoms, making its
early diagnosis possible. Current brain network analyses treat
high-dimensional network data as a regular matrix or vector,
which destroys the essential network topology, thereby seriously
affecting diagnosis accuracy. In this context, harmonic waves
provide a solid theoretical background for exploring brain
network topology. However, the harmonic waves are originally
intended to discover neurological disease propagation patterns in
the brain, which makes it difficult to accommodate brain disease
diagnosis with high heterogeneity. To address this challenge,
this article proposes a network manifold harmonic discriminant
analysis (MHDA) method for accurately detecting AD. Each
brain network is regarded as an instance drawn on a Stiefel
manifold. Every instance is represented by a set of orthonormal
eigenvectors (i.e., harmonic waves) derived from its Laplacian
matrix, which fully respects the topological structure of the brain
network. An MHDA method within the Stiefel space is proposed
to identify the group-dependent common harmonic waves,
which can be used as group-specific references for downstream
analyses. Extensive experiments are conducted to demonstrate
the effectiveness of the proposed method in stratifying cognitively
normal (CN) controls, mild cognitive impairment (MCI), and AD.
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I. INTRODUCTION

ALZHEIMER’s disease (AD) is a neurodegenerative dis-
ease in the human brain that is often caused by atrophy

of the nerve area of brain tissue [1]. In clinical diagnosis,
AD patients usually suffer from memory upset, and behavioral
and cognitive decline, which seriously affect their quality of
life. Broadly, AD is divided into three phases according to
disease progression: cognitively normal (CN) controls, mild
cognitive impairment (MCI), and AD. MCI is an early stage
of AD and is characterized by obvious cognitive impairment
without complete cognitive ability loss. Converging evidence
shows that MCI has a high risk of turning into AD [2].
The accurate diagnosis of the MCI stage is a crucial step
in alleviating the development of AD, because medication
might help delay the symptoms during the MCI stage [3], [4].
Patients in the primary stage should be appropriately treated
to slow the progression of the disease. However, changes
in brain function and anatomical structure in the early
stage of AD are subtle [5], making the early diagnosis of
AD challenging.

With the rapid development of noninvasive neuroimag-
ing techniques, it becomes possible to capture multimodal
brain images from the same sample, which provides an effi-
cient and feasible method for investigating structural brain
connectivity [6]. For example, combining diffusion-weighted
magnetic resonance imaging (DW-MRI) and magnetic trac-
tography (MEG) techniques offers a noninvasive window to
reconstruct the major fiber tracts in the brain and visualize
the structural spreading pathways that connect different brain
regions, thus helping us better understand the neuropathologi-
cal propagation underpinnings of neurological disorders [7].
Recent neuroscience research has shown that interactions
between brain regions are a critical driver in the analysis of
neurodegenerative diseases [8], [9]. Inspired by graph theory,
brain networks can be composed of nodes and edges which are
used to represent the interactions between brain regions. The
development of graph research methods allows us to quantify
the complex topological features of brain networks and detect
network modularity alterations. Although identifying brain
network alterations is beneficial to the early diagnosis of AD,
designing a novel brain network analysis method is a difficult
problem with the brain network being a high-dimensional
irregular data structure.
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Recently, a growing number of brain network-based meth-
ods have been proposed to study neurological disorders. They
can be divided into two categories: 1) studies on specific net-
work models, such as small-world networks [10] and default
mode networks (DMNs) [11], and 2) studies on brain network
classification based on machine learning methods [12], [13].
For the first category, the backbone of these studies focus
on quantifying the topological differences between AD and
CN brain networks by applying graph-theory analysis methods
to specific brain networks. Although these studies validate
the hypothesis of disconnected and abnormal syndromes in
AD and MCI patients, brain network alterations in early AD
are not restricted to specific brain subnetworks, making it
difficult to accurately distinguish between AD and CN in
individuals. Regarding the second category, most data-driven
machine learning methods are employed to train a classifica-
tion model to identify neurological disorders. These machine
learning methods first extract the most discriminative subset of
features from the brain network as initial features. Then, such
discriminative features are directly used as feature vectors for
subsequent disease diagnosis tasks. Notably, unlike traditional
data represented in feature space, vectorization of irregular
data structures destroys the essential topological structure
properties. Motivated by the above analysis, most studies
on structural brain networks focus on specific subnetwork
representations and feature learning steps to analyze the
differences between structural brain networks, which leads
to the feature selection problem in network classification.
Recent efforts to investigate the topological properties of brain
networks have focused on Grassmann manifolds [14] or Stiefel
manifolds [15]. However, most manifold methods explore
only connectivity alterations in brain networks and lack dis-
criminative representation. Recently, graph neural networks
(GNNs) [16] have become a hot topic of research in analyzing
irregular brain networks owing to their powerful ability to
analyze graph-structured data. However, brain networks are
different from other graphs in the real world, so GNN design
needs to be customized to follow the unique nature of brain
network data [17]. In addition, GNN-based methods have
several major limitations, including poor globality and easy
oversmoothing.

One possible solution is to define a novel mathematical
representation of the brain network that has sufficient statistical
power to: 1) represent the topology profile of the brain
network; 2) provide rigorous mathematical characterization
to facilitate reasoning; and 3) possess strong discriminative
properties for addressing heterogeneity across brain networks.
As mentioned earlier, the structural brain network constructed
by diffusion MRI is inherently a spatially embedded network
with a high-dimensional complex topology [18]. Emerging
studies have confirmed that such a complex topological struc-
ture in a brain network can be expressed by the eigensystem
of its underlying Laplacian matrix, such as modules and
hubs [14]. The eigenvectors of the Laplacian matrix constitute
the unique bases of the topological structure in the underlying
network, which are introduced in detail in Section II-C.
Moreover, recent studies have found that the eigenvectors of
the Laplacian matrix are a set of orthonormal bases, named

harmonic waves, which can be used to characterize the prop-
agation patterns of neuropathological events [19]. Therefore,
such eigenvectors behind individual brain networks reside on a
high-dimensional Stiefel manifold. In this context, harmonic-
based analyses have been employed for brain network analysis
based on frequency alterations on the Stiefel manifold [20].
However, these methods focus on analyzing the spreading
pathways of neuropathological burdens in neurodegenerative
diseases and have not paid sufficient attention to the discrimi-
nation ability to enhance features, which in turn leads to poor
classification results in terms of the high heterogeneity across
brain networks.

To overcome the limitations of the existing brain network
analysis methods, by endowing the brain network topology
with the well-studied Stiefel manifold, a novel manifold
harmonic discriminant analysis (MHDA) method is proposed
to stratify CN, MCI, and AD. The backbone of the pro-
posed method applies harmonic waves to approximate the
self-organized oscillation patterns of each brain network.
It estimates the discriminative group-dependent common har-
monic waves on the Stiefel manifold as the group-specific
centers for downstream analyses. The MHDA workflow is
illustrated in Fig. 1. An adjacency matrix is first constructed
for each brain network, and then, its harmonic waves are
captured by the eigendecomposition of the Laplacian matrix,
as shown in Fig. 1(a). After that, the linear discriminant
analysis of Euclidean space is extended to the Stiefel man-
ifold through a series of manifold algebra operations. The
group-dependent common harmonic waves with discriminant
information are evaluated by minimizing the intragroup and
intergroup geodesic distances of individual harmonic waves,
as shown in Fig. 1(b). Finally, the test sample label is the one
with the shortest geodesic distance with respect to the manifold
center, as illustrated in Fig. 1(c). In the literature, several meth-
ods [21], [22] have been proposed exploiting the advantages
of high-dimensional matrix-valued data for the classification
task. These approaches follow the traditional Fisher’s linear
discriminant analysis (FLDA) to project high-dimensional data
to the low-dimensional space to enhance the classification
performance. However, this dimensionality reduction process
is not appropriate for brain network analysis, as it would
destroy the harmonic wave properties across the brain network.
Instead, in the proposed approach, group-dependent common
harmonic waves are learned on Stiefel manifolds to solve the
problem of projection matrices. In addition, two optimization
methods based on the Stiefel manifold are proposed to address
the computational complexity of MHDA and multigroup com-
mon harmonic waves optimization challenges. As a result, this
article proposes that the brain network analysis method is built
upon two sets of Riemannian manifold optimization, making
the model more flexible for high-dimensional brain network
analysis problems. We evaluate the proposed method on
155 structural brain networks collected from the ADNI dataset,
which contains 55 CN, 44 MCI, and 56 AD subjects. The
experiments confirm the effectiveness of the proposed method
for diagnosing brain diseases and identifying the regions of
the brain responsible for causing these diseases. Furthermore,
the scalability and complexity analyses demonstrate that the
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Fig. 1. Overview of the MHDA method in brain network classification tasks. (a) Brain networks are taken as the input, and a set of adjacency matrices
is generated (preprocess). (b) Then, the group-dependent common harmonic waves are obtained by MHDA, where Stw1 and Stw2 represent the intragroup
geodesic distance and Stb represents the intergroup geodesic distance learned over all individual harmonic waves located on the Stiefel manifold. (c) Finally,
the learned group-dependent common harmonic waves are used for brain network classification (decision), where the contour lines indicate the geodesic
distance from the individual harmonic waves to the group-dependent common harmonic waves.

algorithm is applicable to high-dimensional brain networks of
varying scales.

The main contributions of our MHDA method are threefold.

1) To fully consider the topology of the brain net-
work, a novel MHDA method is proposed to classify
each brain network into subtypes. MHDA employs
the group-dependent harmonic waves representation
strategy to explore the topological differences among
brain networks in group comparisons, thereby achiev-
ing accurate classification of brain diseases. Com-
pared with our previous manifold analysis method [20],
MHDA primarily identifies group-dependent har-
monic waves for the classification of brain net-
works and analysis of topological differences between
groups.

2) The changes in brain networks between different groups
(such as CN and MCI) are subtle, which causes large
intraclass diversity and interclass similarity. To this end,
a tailored harmonic-based Fisher’s criterion is presented
that not only maintains the topology of brain networks
but also alleviates the heterogeneity of brain networks.
Compared with classical manifold-based discriminant
analysis [21], MHDA mainly enhances the discrimi-
native power of brain networks in the original Stiefel
manifold space rather than in the low-dimensional
Euclidean space, which is more conducive to clinical
interpretability in neuroscience.

3) Two optimization algorithms are proposed to solve
parameter matrices with orthogonal constraints. The
first algorithm provides higher accuracy, but at the
expense of increased computational complexity. Alter-
natively, the second algorithm trades off a small
amount of accuracy to achieve improvement of com-
putational efficiency. Extensive experiments on both

synthetic and real datasets were conducted to demon-
strate that the proposed method has superior classi-
fication performance compared to the state-of-the-art
approaches. Furthermore, the flexibility and adaptability
of the two Riemannian optimization methods in analyz-
ing high- or low-dimensional manifold-valued data from
different scenarios has been discussed.

The rest of this article is organized as follows. The the-
oretical background associated with the study in Section II
is briefly reviewed. Then, a detailed description of the
MHDA model and its numerical optimization scheme is
also provided in Section III. Experiments are conducted
to test the performance of the MHDA in Section IV.
In Section V, the proposed MHDA model, including dis-
covering important brain regions and limitations, is fur-
ther discussed. Finally, concluding remarks are provided
in Section VI.

II. NOTATION AND RELATED WORKS

A. Notation

Throughout this article, a matrix M ∈ Rn×p is written as a
boldface capital letter, and the i th row vector and the (i j)th
element in matrix M are written as boldface lowercase let-
ters mi and lowercase letters mi j , respectively. The identity
matrix is denoted In ∈ Rn×n . 0p ∈ Rp×p denotes the
zero matrix. The notation 1 denotes the tangent vector on
tangent plane TM generated on point M in Stiefel manifold
space St(n, p). In addition, Tr(·) is the trace operation, and
exp1(·) represents the exponential map operation projecting
tangent 1 back onto the Stiefel manifold. We use FM to
denote the matrix derivative of function F with respect to M
and ∇M F to denote the gradient of F at point M, where
F is a smooth real-valued function defined on the Stiefel
manifold.
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B. Stiefel Manifold

The Stiefel manifold St(n, p) consists of an ordered set
of orthonormal n-by-p matrices. Specifically, any matrix
(i.e., individual harmonic waves) X ∈ Rn×p can be considered
a point on the Stiefel manifold if it satisfies XT X = I p.
In exceptional cases, St(n, p) can be embedded into the
np-dimensional Euclidean space of the n-by-p dimensional
matrix [23]. Therefore, the effective approximation to the
geodesic distance between X ∈ St(n, p) and Y ∈ St(n, p)

can be defined as follows:

d2(X, Y) =
1
2

Tr (X − Y)T (X − Y) = p − Tr(XT Y). (1)

For a smooth real-valued function F defined on the Stiefel
manifold, the gradient of function F at point X ∈ St(n, p) is
defined as the tangent vector on the tangent space, i.e., ∇X F ∈
TX F , where the tangent space TX F is composed of a set of
tangent vectors at X . ∇X F can be defined by

∇X F = FX − X F T
X X (2)

where FX denotes the n-by-p derivative matrix of F with
respect to X on the Stiefel manifold. Given a tangent vector
1 ∈ TX , directly calculating the intrinsic geodesic distance
on the Stiefel manifold emanating from X in direction 1

is computationally complex. Therefore, the matrix exponen-
tial method is applied to alleviate the computational chal-
lenge [23]. First, the matrices Q ∈ Rn×p and R ∈ Rp×p

are obtained by compact QR decomposition of (I − X XT )1.
Therein, Q and R are the orthonormal matrix and upper tri-
angular matrices, respectively. After that, the tangent vector is
mapped to the Stiefel manifold through exponential retraction

expX(1) = X B + QC (3)

with B, C ∈ Rp×p given by[
B
C

]
= exp

([
A −RT

R 0p

])[
I p

0p

]
(4)

where A = XT 1 ∈ Rp×p. Equation (4) can be easily
computed by solving a 2p-by-2p skew-symmetric eigenvalue
problem using tailored singular value decomposition (SVD)
algorithm [23].

The manifold algebra mentioned above provides an effective
solution for measuring the difference between individual har-
monic waves, thereby facilitating the search for discriminative
group-dependent common harmonic waves, which are used for
the subsequent classification task.

C. Harmonic Waves Transform on Brain Network

At the macroscale, brain networks are represented by
graphs, where each node represents a specific brain region,
and the edges represent the connectivity between a pair of
nodes. More specifically, given a brain network encoded as
a graph G = (V, E, W), it consists of a finite set of nodes
V = {vi |i ∈ 1, . . . , n} with n nodes and E = {ei j |(vi , v j )

∈ V×V } representing all possible connections between nodes.
W ∈ Rn×n is an adjacency matrix with positive weights, where
each element wi j ∈ W represents the connection strength

between nodes vi and v j . Then, the graph Laplacian matrix
L ∈ Rn×n is calculated by

L = D −W (5)

where D = diag(d1, d2, . . . , dn) is a degree matrix of W . Each
diagonal element equals the total connectivity degree of the
underlying node, i.e., di =

∑n
j=1 wi j .

The eigenvectors of the Laplacian matrix are obtained from
the close-form solution to the following objective function:

min
8∈Rn×p

Tr(8T L8), s.t. 8T 8 = I p. (6)

In (6), the eigenvectors in 8 = [φi ]
p
i=1 are associated with

eigenvalues, so they are sorted according to their eigenvalues
in an ascending order. As the eigenvalue increases, the associ-
ated eigenvector contains a large amount of high-frequency
noise and oscillates violently. Additionally, brain network
connectivity is usually better expressed in the low-frequency
feature space of the graph spectrum. As a result, for a
brain network with n nodes, the first p column (p < n)

low-frequency eigenvectors are selected to characterize the
topology of the brain network.

In the spatial domain, the brain network is a type of irregular
graph structure with specific topological characteristics, such
as hub nodes, small worlds, and hierarchical modality. The
brain network organization is dominated by the Laplacian
matrix of each network [14], and its underlying eigenvectors
have been widely employed as graph embeddings [19], where
each element of the eigenvector characterizes the topological
profile of a specific node in the graph. In the frequency
domain, a harmonic wave is a spatial expansion on the Fourier
basis linked to the brain network structure, with an increasing
spatial frequency, which in turn fits well with the anatomical
structure of the brain. Each harmonic wave is defined as
a self-organized propagation pattern of brain energy [19].
Mathematically, harmonic waves are a fundamental problem in
geometric analysis and can be considered points on the Stiefel
manifold due to orthogonality [24]. Therefore, harmonic waves
not only establish a relation between the spatial structure of
brain networks and frequency oscillations but also provide a
new window for differential geometric understanding of brain
anatomy.

III. PROPOSED METHOD

In this section, by exploring the brain network topology
using the Stiefel manifold with Fisher’s criterion, an MHDA
method is presented in Section III-A, followed by the opti-
mization scheme presented in Section III-B. Therein, the
MHDA input is the eigenvectors (i.e., individual harmonic
waves) obtained from the eigendecomposition of the Lapla-
cian matrix. The goal of MHDA is to identify two sets
of group-average eigenvectors from two different popula-
tions, where each set of group-average eigenvectors contains
group-specific information about the intrinsic topology of
the brain network. The derived group-average eigenvectors
are the group-dependent common harmonic waves located
on the Stiefel manifold, which can be regarded as the har-
monic bases of the underlying group-specific brain network
template. Besides, group-dependent common harmonic waves
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can be used to alleviate the challenge of brain network
classification.

A. Manifold Harmonic Discriminant Analysis

Given a set of Laplacian matrices L = {(L1, y1),

(L2, y2), . . . , (LN , yN )} with Li ∈ Rn×n and yi ∈ {1, 2}, each
individual harmonic waves 8i ∈ Rn×p can be obtained by
the eigendecomposition of Laplacian matrix Li . C j ( j = 1, 2)

is defined as the set of brain networks from the j th group.
The goal of MHDA is to learn the group-dependent common
harmonic waves 9 j ∈ Rn×p from all individual harmonic
waves {8i } on the Stiefel manifold. Therefore, the geodesic
distance between the two group-dependent common harmonic
waves 9 j ( j = 1, 2) is maximized while minimizing
the geodesic distance between the group-dependent com-
mon harmonic waves 9 j and the individual harmonic waves
8i ∈ C j within each group by (7). The intragroup distance
Stw and intergroup distance Stb on the Stiefel manifold are
defined as

Stb =
1
2

Tr (91 −92)
T
(91 −92) = p − Tr

(
9

T
1 92

)
Stw =

1
2

2∑
j=1

∑
8i∈C j

Tr (8i −9 j )
T
(8i −9 j )

=

2∑
j=1

∑
8i∈C j

(
p − Tr

(
8i

T 9 j
))

. (7)

Generally, traditional FLDA solves (7) with a trace ratio
problem of the form maxM Tr(MT Stb M)/ Tr(MT Stw M),
where M is the transformation matrix. However, the
denominator causes instability while searching for a trans-
formation matrix. Alternatively, the trace difference [25]
maxM Tr[MT (Stb − λStw)M] can be maximized. As a result,
adhering to the idea of FLDA for trace difference problems,
(7) is constituted as a discriminant analysis problem on the
manifold, as follows:

min
{8i },9 j

Stw − Stb. (8)

In the process of minimization, each instance 8i is adjusted
toward the potential manifold center 9 j . Once 9 j is evaluated,
it can be utilized to guide the refinement of 8i . The final
results obtained are group-dependent common harmonic waves
located on the Stiefel manifold, which can be considered
harmonic bases of the underlying population-specific brain
network templates. The complete solution procedure is pro-
vided in Section III-B. Unlike FLDA, the low-dimensional
projection matrix M is set as an identity matrix, indicating
that the individual harmonic waves do not require any trans-
formation operation. Thus, the proposed method respects the
geometric relationships within individual brain networks while
avoiding the disruption of nonlinear structures through low-
dimensional mapping.

The construction of individual harmonic waves is influenced
not only by the underlying Laplacian matrix but also by the
attraction of the group-dependent common harmonic waves at
the center of the manifold. Therefore, by combining (6) on

the Stiefel manifold and (8), the final objective function is
modeled by the following:

min
{8i },9 j

N∑
i=1

Tr(8T
i Li8i )

+

2∑
j=1

∑
8i∈C j

λ1
(

p − Tr
(
8i

T 9 j
))

− λ2
(

p − Tr
(
9

T
1 92

))
s.t. 8T

i 8i = I p, for i = 1, . . . , N (9)

where λ1 and λ2 are nonnegative scalars balancing intragroup
and intergroup terms. The first term in (9) is employed to
penalize each set of individual harmonic waves 8i charac-
terizing the topology of its own Laplacian matrix Li . The
second term is the intragroup distance, and the third term
is the intergroup distance. In this way, (9) can effectively
address intragroup variability and intergroup heterogeneity
while preserving the local structure of the brain network.
Specifically, since the trace-norm operation is not an intrinsic
metric defined in the Stiefel manifold space, the orthonormal
constraint term must be implemented to ensure the orthonor-
mality of individual harmonic waves, i.e., 8T

i 8i = I p, for
i = 1, . . . , N , such that all individual harmonic waves {8i }

are on the Stiefel manifold. For the group-dependent common
harmonic waves {9 j | j = 1, 2}, its orthonormality is not
restricted since it is entirely driven by the intrinsic manifold
geometry, as demonstrated in Section III-B. Moreover, because
the objective function is not invariant to any orthonormal
matrix Q( Q ∈ Rn×p, QT Q = I), the common harmonic
waves are optimized on the Stiefel manifold instead of other
Riemannian manifolds [26].

B. Numerical Scheme to Solve the Manifold Harmonic
Discriminant Analysis

One difficulty in solving the trace difference problem in (9)
is that there is high complexity in jointly optimizing individ-
ual harmonic waves and group-dependent common harmonic
waves simultaneously. Accordingly, two manifold gradient
descent methods are proposed to solve this problem by alter-
nating direction method of multipliers (ADMM) scheme [20].
The first one iteratively calculates the mean tangent in the
tangent space and then maps it back to the Stiefel manifold,
termed accurate optimization (AO). The second one directly
employs curvilinear search optimization on the manifold,
named by fast optimization (FO).

1) Accurate Optimization: The augmented Lagrangian
function of (9) is as follows:

min
{8i },9 j

N∑
i=1

{Tr(8T
i Li8i )+

2∑
j=1

∑
8i∈C j

{
λ1

(
p − Tr

(
8i

T 9 j
))

+Tr
(
3T

i

(
8T

i 8i − I p
)}
− λ2

(
p − Tr

(
9

T
1 92

))
(10)

where 3i ∈ R p×p is the Lagrangian multiplier. The minimiza-
tion problem in (10) can be decoupled into two subproblems.
Each subproblem is solved, and the obtained solution is
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updated iteratively until convergence is reached. The whole
numerical procedure is summarized in Algorithm 1.

Algorithm 1 AO
Input: Adjacency matrices {(W 1, y1), · · · , (W N , yN )} with

W i ∈ Rn×n and yi ∈ {1, 2}.
Output: Group-dependent common harmonic waves 9 j=1,2.

1: Initializing parameters λ1, λ2, and Li = Di −W i ;
Initialize group-dependent common harmonic waves 9 j

and individual harmonic waves 8i ∈ Rn×p;
Calculate the positive definite matrix L̃i = β I − Li .

2: while ε < threshold do
3: for i = 1 to N do
4: while ∥ 8

(k+1)
i −8

(k)
i ∥< ε1 do

5: Update 2i ∈ Rn×p
← L̃i8

(k)
i + λ19 j .

6: Calculate Ui6i VT
i = 2i by SVD method.

7: Update 8
(k+1)
i = U i V T

i .
8: end while
9: end for

10: Randomly set starting point 9
1
j = 8i , 8i ∈ C j .

11: while ∥19 j∥ < ε2 do
12: Calculate 19

(k+1)

1 and 19
(k+1)

2 using the Eq. (15)
and Eq. (16) respectively.

13: Mapping back to manifold space 9
(k+1)

j =

exp
9

(k)

j
(19

(k+1)

j )

14: end while
15: Update 9 j = 9

(k+1)

j ( j = 1, 2).
16: Calculate Newcost using the Eq. (9).
17: ε = abs(Newcost − Oldcost )

18: Update Oldcost = Newcost

19: end while

Subproblem 1 (Solving the Individual Harmonic Waves
8i Intragroup): All the individual harmonic waves {8i } are
independent of the group-dependent common harmonic waves;
thus, 8i can be evaluated by fixing 9 j . The problem modeled
in (10) is a quadratic optimization problem on the Stiefel
manifold provided that the matrix Li is positive definite; thus,
L̃i = β I−Li is modified to substitute Li , where the parameter
β is set as the maximum eigenvalue of Li . By removing the
irrelevant variables, the objective function is simplified as

max
{8i }

N∑
i=1

Tr(8T
i L̃i8i )+

2∑
j=1

∑
8i∈C j

{
λ1 Tr

(
8T

i 9 j
)

−Tr
(
3T

i

(
8T

i 8i − I p
))}

.

(11)

According to the KKT condition

∂ F̃8i

∂8i
= 2L̃i8i + λ19 j − 28i3i = 0 ∀8i ∈ C j . (12)

However, directly solving 8i in (12) through direct inver-
sion may result in high-computational complexity or instabil-
ity. To address this issue, the generalized power iteration (GPI)
method [27] is employed to iteratively update 8i , which
effectively solves the inverse of 8i and the calculation of the
Lagrange multiplier 3i . The process consists of four key steps.

1) Decompose the Laplacian matrix Li via SVD to obtain
the initial individual harmonic waves 8i to satisfy
8T

i 8i = I p.
2) Update 2i ∈ Rn×p

← L̃i8
(k)
i + λ19 j ,∀8i ∈ C j .

3) Calculate 8i by solving the constrained trace-norm
problem as

max
8T

i 8i=Ip

Tr
(
8T

i 2i
)
∀8i ∈ C j , j ∈ {1, 2}. (13)

It has a closed-form solution of 8i = U i V T
i , where

U i ∈ Rn×p and V i ∈ Rp×p are the left and right
eigenmatrices of 2i , respectively.

4) Iteratively perform steps (2)–(4) until converges.
Subproblem 2 (Solving the Group-Dependent Common Har-

monic Waves 9 j Intergroup): By fixing the set of individual
harmonic waves obtained in subproblem 1, the objective
function on group-dependent common harmonic waves can
be simplified as follows:

min
9 j

2∑
j=1

∑
8i∈C j

(
p(1− λ2)− Tr

(
8T

i 9 j
))
+ λ2 Tr

(
9

T
1 92

)
.

(14)

Solving (14) can be considered as finding group-dependent
common harmonic waves 9 j on the Stiefel manifold. This
is achieved by minimizing the intragroup geodesic distance
between each individual harmonic waves 8i ∈ C j and the
underlying common harmonic waves 9 j while maximizing
the intergroup geodesic distance between the group-dependent
common harmonic waves 9 j from different groups. Conse-
quently, the problem is the classical Fréchet mean problem,
which can be solved by the Weizfeld algorithm [28]. It consists
of three iterative steps until convergence is reached.

1) Initialize the group-dependent common harmonic waves
9

(k)

j as the center points on the current Stiefel manifold.
2) Calculate the gradient ∇9 of the energy function in (14)

with respect to each individual harmonic waves 8i on
the current estimation of the group-dependent manifold
center 9

(k)

j through (8). By doing so, the mean tangent

19
(k+1)

j ∈ T
9

(k)

j
can be obtained by the following

equations:

19
(k+1)

1 = −

∑
8i∈C1

{(
9

(k)

1 8T
i 9

(k)

1 −8i

)
−λ2

(
9

(k)

1

(
9

(k)

2

)T
9

(k)

1 −9
(k)

2

)}
(15)

19
(k+1)

2 = −

∑
8i∈C2

{(
9

(k)

2 8T
i 9

(k)

2 −8i

)
−λ2

(
9

(k)

2

(
9

(k)

1

)T
9

(k)

2 −9
(k)

1

)}
.

(16)

3) Map the mean tangent 19
(k+1)

j back to the Stiefel

manifold through 9
(k+1)

j = exp
9

(k)

j
(19

(k+1)

j ) to update

the group-dependent common harmonic waves 9
(k+1)

j .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on December 04,2023 at 18:48:40 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: BRAIN NETWORK CLASSIFICATION FOR ACCURATE DETECTION OF AD VIA MHDA 7

2) Fast Optimization: A significant challenge in Rieman-
nian optimization is the computational expense associated with
exponential mappings and nonnegative matrix decompositions
when optimizing Stiefel manifolds. To this end, the FO is
proposed as a tailored manifold optimization to address the
high-computational complexity of the AO algorithm. The
update strategy of the FO involves a variation of the steepest
gradient descent (SGD) method that is adapted for optimiza-
tion on manifolds. Often, SGD computes the next iteration
point as Y = X − τ∇X F , where τ > 0 is a step size and
∇X F ∈ TX F . The issue arises when the newly generated point
does not satisfy YT Y = I. Accordingly, the FO algorithm
improves the term ∇X F similar to [29] and computes the next
iteration point from the equation

Ŷ = X−
τ

2
W̃(X+ X̂) (17)

where Ŷ is the next point on the manifold. X and X̂ are
the current point and the initialized center point, respectively.
Specifically, (1/2)W̃X ≈ (1/2)∇X F . The induced direction
(1/2)W̃X̂ compels the update of Ŷ to align with the geodesic,
helping the algorithm to follow the natural shape of the man-
ifold. W̃ is a skew-symmetric matrix [26] as W̃ = Ŵ − Ŵ⊤,
where Ŵ = FX X⊤ − (1/2)X(X⊤FX X⊤) and FX is the
gradient of the objective function at X. As a result, the new
point Ŷ is updated by combining the initial direction (1/2)W̃X
and the induced direction (1/2)W̃X̂ along the geodesic line.
Additionally, a momentum M̂ is introduced into the gradient
direction via extension [30], [31] to improve the rate of
convergence. Therein, the momentum in the kth optimization
step is defined as

M̂(k)
= β M̂(k−1)

+ (1− β)F (k−1)
X i

(18)

where β > 0 is the balance parameter and the momentum
M̂(k−1)

∈ TX F . The momentum M̂(k) is the direction of
iteration. In this case, Ŵ (k)

= M̂(k)X(k)
i

T
− (1/2)X(k)

i (X(k)
i

T

M̂(k)X(k)
i

T
). The momentum M̂(k) is updated within the tan-

gent space of the current point [30], and can be expressed
as M̂(k)

= W̃ (k)X(k)
i . In (18), the projection onto the tangent

space is a linear map [26] that satisfies τM(M(k−1))+F (k−1)
X i
=

πTXi
(M(k−1))+ πTXi

(FX (k−1)
i

) = πTXi
(M(k−1)

+ F (k−1)
X i

). Thus,
a linear combination of the gradient F (k−1)

X i
and the momentum

M̂(k−1) can reasonably be used to generate a new gradient
direction M̂(k). Subsequently, the momentum M̂(k) is updated
within the tangent space, and the center point X̂ is initialized
along this same space following the SGD. Finally, the next
point on the Stiefel manifold is updated using (17), which
exclusively involves matrix multiplication, circumventing the
need for matrix decomposition and exponential retraction.
Additionally, this indicates that the FO algorithm updates
the manifold points along the gradient direction of the curve
as a manifold-to-manifold process. The process of the FO
algorithm composes of the following steps.

1) Initialization of the input Xi and momentum M̂0
= 0,

satisfying XT
i Xi = I p.

2) Update FX i ∈ Rn×p.
3) Calculate momentum M̂(k)

= β M̂k−1
+ (1− β)FX i .

4) Calculate the auxiliary matrix by the following
equations:

Ŵ (k)
← M̂(k)X(k)

i
T
−

1
2

X(k)
i

(
X(k)

i
T

M̂(k)X(k)
i

T )
. (19)

5) Update W̃ (k)
← Ŵ (k)

− (Ŵ (k))T .
6) Update momentum M̂(k)

= W̃ (k)X(k)
i .

7) Initialize X̂i = X(k)
i − τ M̂(k).

8) Update X(k+1)
i ← X(k)

i − (τ/2)W̃ (k)(X(k)
i + X̂i ).

9) Iteratively perform steps (2)–(8) until converges.
In this article, the FO algorithm is employed to update

individual harmonic waves and group-dependent common
harmonic waves. However, there is a slight difference in the
second update step for these two types of harmonic waves.
Specifically, F8i = L̃i8i + λ19 j corresponds to the update
of the individual harmonic waves differential, whereas F9 j =

−8i+λ29 j corresponds to the update of the group-dependent
common harmonic waves differential. Detailed information on
the optimization procedure can be found in Algorithm 2.

Algorithm 2 FO
Input: Adjacency matrices {(W 1, y1), · · · , (W N , yN )} with

W i ∈ Rn×n and yi ∈ {1, 2}.
Output: Group-dependent common harmonic waves 9 j=1,2.

1: Initializing parameters λ1, λ2, β, τ and Li = Di −W i ;
Initialize group-dependent common harmonic waves 9 j

and individual harmonic waves 8i ∈ Rn×p; Momen-
tum M̂0

= 0; Calculate the positive definite matrix
L̃i = β I − Li .

2: while ε < threshold do
3: for i = 1 to N do
4: while ∥ 8

(k+1)
i −8

(k)
i ∥< ε1 do

5: Update F8i ← L̃i8
(k)
i + λ19 j .

6: Calculate M̂(k)
= β M̂k−1

+ (1− β)FX i .
7: Calculate Ŵ (k) by Eq. (19)
8: Update W̃ (k)

← Ŵ (k)
− (Ŵ (k))T and M̂(k)

←

W̃ (k)8
(k)
i

9: Initialize 8̂i ← 8
(k)
i − τ M̂(k)

10: Update 8
(k+1)
i ← 8

(k)
i −

τ
2 W̃ (k)(8

(k)
i + 8̂i ).

11: end while
12: end for
13: Randomly set starting point 9

1
j = 8i , 8i ∈ C j .

14: while ∥19 j∥ < ε2 do
15: Update F9 j = −8i + λ29 j .
16: Calculate M̂(k)

= β M̂k−1
+ (1− β)F9 j .

17: Calculate Ŵ (k) by Eq. (19)
18: Update W̃ (k)

← Ŵ (k)
− (Ŵ (k))T and M̂(k)

←

W̃ (k)9
(k)
j

19: Initialize 9̂ j ← 9
(k)
j − τ M̂(k)

20: Update 9
(k+1)
j ← 9

(k)
j −

τ
2 W̃ (k)(9

(k)
j + 9̂ j ).

21: end while
22: Update 9 j = 9

(k+1)

j ( j = 1, 2).
23: Calculate Newcost using the Eq. (9).
24: ε = abs(Newcost − Oldcost ).
25: Update Oldcost = Newcost

26: end while
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By the above alternate optimization strategy, both the
individual harmonic waves and group-dependent common har-
monic waves are eventually obtained for early diagnosis of AD
and AD-related brain region identification. In our subsequent
experiments, we will use the MHDA and MHDA-M to refer
to the AO and FO algorithms, respectively. We discuss the
effectiveness of both optimization algorithms in Section IV-F.
It is worth noting that to meet the requirement of high accuracy
in predicting the early stage of AD, we primarily apply the
MHDA algorithm to analyze the limited brain network data in
most of the experiments.

IV. EXPERIMENTS AND RESULTS

A. Comparison Approaches
14 popular methods are borrowed from seven major types

for performance comparison. They are briefly introduced as
follows.

1) Baselines: FLDA, support vector machine with linear
kernel (L-SVM), AdaBoost, and random forest.

2) GNNs: GCNautoencoder [16] and BrainGB [17].
3) Spectral Graph Analysis Methods: Spectral regression

discriminant analysis (SRDA) [32], and spectral regres-
sion kernel discriminant analysis (SRKDA) [33] with
multicluster sparse feature selection.

4) Manifold Regularized Method: Manifold discriminative
feature selection (MDFS) [34] with linear kernel SVM
classifier, i.e., M-SVM.

5) Multiple Kernel Method: Scalable multiple kernel learn-
ing (EasyMKL) [35].

6) Higher-Order Tensor Method: Higher-order SVD with
sparse logistic regression (S-HOSVD) [36].

7) Manifold Metric and Matrix Linear Discriminant Meth-
ods: Projection metric learning (PML) [21], manifold
harmonic analysis (MHA) [20], and matrix linear dis-
criminant analysis (MLDA) [22].

The goal of this work is to learn group-dependent common
harmonic waves with discriminative ability by combining
harmonic waves and the Stiefel manifolds. The classification
performance of the proposed method is compared with four
classic classifiers, as well as several other brain network classi-
fication methods. For the GNN approach, the GCNautoencoder
learns a low-dimensional embedding for brain network classi-
fication through a symmetric GNN. BrainGB is a benchmark
tailored to brain networks using GNNs. Spectral graph anal-
ysis methods, including SRDA and SRKDA, are constructed
as supervised brain network classification algorithms, where
SRKDA utilizes the MCFS algorithm for feature selection.
The manifold regularization method M-SVM leverages low-
dimensional manifold projections to discover the local cor-
relations of the brain network. For the multikernel method,
easyMKL attempts to classify the brain network data by a set
of predefined kernel matrices. The higher order tensor method
S-HOSVD is a higher order feature extraction classification
model proposed for structural brain networks computed from
diffusion MRI. Two manifold methods, PML and MHA, are
geometric-aware dimensionality reduction and structural brain
network MHA methods, respectively. Matrix discriminant
analysis is a method for classifying high-dimensional matrices.

Fig. 2. Comparison of MHA and MHDA for finding the group-dependent
common centers on the Stiefel manifold. Top: Two groups of samples
(a) Group-1 and (b) Group-2 are generated by different rotations of the
ground truth. Bottom: (c) Optimization process of MHA (trajectory in red)
and MHDA (trajectory in green) on Stiefel manifolds. (d) Group-dependent
common center identification results of MHDA and MHA.

To ensure experimental fairness, the parameters of the compar-
ison methods were empirically tuned according to the original
works.

To evaluate the reasonableness of the group-dependent
harmonic waves obtained by the MHDA algorithm, the perfor-
mance of our group-dependent common harmonic waves 9 j

optimized on the Stiefel manifold is compared with the per-
formances of two other Euclidean average harmonic waves,
that is: 1) 9 j by averaging all individual harmonic waves
and 2) 9̃ j by first averaging all adjacency matrices and
then applying SVD decomposition to the averaged adjacency
matrix. In the following, 9 j and 9̃ j are the arithmetic mean
harmonic waves and pseudo-harmonic waves, respectively.

B. Experiment on Synthetic Data

In this section, low-dimensional synthetic data are employed
to illustrate the robustness of MHDA in terms of the hetero-
geneity of brain networks. Because the proposed method finds
group-dependent common centers on the Stiefel manifold, it is
reasonable to generate a series of low-dimensional synthetic
data with orthonormality. Motivated by Fletcher et al. [37],
a set of 3-D orthonormal rotation matrices is generated as
individual harmonic waves located on the Stiefel manifold.
This synthetic dataset consists of 48 random 3-D rotation
matrices with 24 samples for each group. Specifically, the
ground truth (common harmonic waves) for each group is
displayed in black in the first row of Fig. 2(d). Given the
rotation axes u1 and u2, the rotation angles θ1 and θ2 are
randomly generated from a zero-mean Gaussian distribution
with standard deviation σ = π/18 and a Gaussian distribution
with mean π/4 and σ = π/20, respectively. After that, the
two groups of rotation matrices centered at the ground truth
are obtained. Fig. 2(a) and (b) shows six rotation matrices
for each group. On the Stiefel manifold, the optimization
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TABLE I
DEMOGRAPHIC INFORMATION ON TRAINING DATA IN ADNI DATABASE

processes of the MHA and MHDA are shown with red and
green trajectories, respectively. The ground truth (manifold
center) of each group is displayed as black “∗” in Fig. 2(c).

For fairness, the MHA and MHDA are set to start from
the same initial point to the stable point corresponding to
the convergence of each method during this experiment.
Specifically, for the MHA method, the common center is
identified group by group by solving the Fréchet mean. The
MHA and MHDA are applied to evaluate the group-dependent
common centers from two groups of random perturbed 3-D
rotation matrices. The MHA and MHDA results are shown
in Fig. 2(c) and (d), and the group-dependent common cen-
ters identified by the proposed MHDA method are closer to
the ground truth than those identified by the MHA method
regarding the influence of some heterogeneous points [shown
in the red dashed circle in Fig. 2(c)]. This is mainly because
the MHDA with the introduction of the Fisher criterion is
more reasonable in evaluating the group-dependent common
centers on the Stiefel manifold than the MHA method by
simply finding the manifold center group by group. Notably,
there is no significant difference across the group-dependent
common harmonic waves initialized with different starting
points, as demonstrated in Section IV-C1.

C. Experiment on the ADNI Dataset

A total of 155 subjects were collected from the ADNI
database for AD classification tasks, including 55 CN sub-
jects, 44 MCI subjects, and 56 AD subjects. Each subject
was scanned by T1-weighted MRI and diffusion-weighted
MRI (DTI). The cortical surface was divided into 148 cortical
regions based on T1-weighted MRI according to a Destrieux
atlas [38]. Then, surface seed-based probabilistic fiber trac-
tography [38] was applied to diffusion tensor imaging data to
generate a 148 × 148 connectivity matrix. The demographic
information is indicated in Table I.

To understand the effectiveness of the proposed method,
the performance of the group-dependent common harmonic
waves 9 j identified by the proposed MHDA method was
evaluated on the ADNI dataset. A series of experiments were
designed to compare the performance of the proposed MHDA
method with the performances of the two categories of meth-
ods, including two common harmonic waves-based methods
(arithmetic mean harmonic waves 9 j and pseudo-harmonic
waves 9̃ j ) and 14 representative brain network classifica-
tion approaches. Specifically, the replicability of the common
harmonic waves (9 j , 9 j , and 9̃ j ) was evaluated by resam-
pling tests. Then, the diagnostic capability of group-dependent
common harmonic waves was compared with that of all
comparison methods. To test the scalability of the proposed
method on large-scale samples, the classification accuracy of
the MHDA was evaluated on resting-state functional magnetic

resonance imaging (rs-fMRI) images of 465 subjects from
the ADNI database. Finally, the hyperparameter sensitivity,
computational complexity, and convergence analysis were
discussed.

1) Evaluation of Replicability: To verify the robustness
of the group-dependent common harmonic waves obtained
by MHDA, the replicability of the three common harmonic
waves (i.e., 9 j , 9 j and 9̃ j ) was tested between CN and AD.
Specifically, the resampling procedure below was applied to
generate 50 test/retest datasets from the CN and AD brain
network datasets. First, a total of 30 CN networks were
randomly sampled from 55 CN networks, and 30 AD networks
were randomly sampled from 56 AD networks. Second, two
sets of networks were sampled from the remaining 25 CN
networks, each with three networks. Similarly, the same
process was applied to AD networks. Third, combining the
networks sampled in steps 1) and 2) above, CN and AD can
form two paired cohorts with 33 networks for each cohort.
After that, the MHDA algorithm was used on these two
paired cohorts to obtain 9 j . Since two paired cohorts only
have 9.1%(3/33) differences in each group (CN or AD),
the replicability of the proposed method could be evaluated
by testing whether there is a significant difference at each
element in the group-dependent common harmonic waves via
the paired t-test. Fewer significant elements imply that the
algorithm has better replicability.

Because each row of the harmonic wave matrix relates to
a brain region, the significance (p < 0.01) of these harmonic
waves can be mapped to the cortical surface in Fig. 3(a)–(f).
Obviously, the group-dependent common harmonic waves cor-
responding to the CN and AD groups obtained by the proposed
algorithm have stronger replicability than pseudoharmonic
waves 9̃ j . In addition, the arithmetic mean harmonic waves
9 j [in Fig. 3(a) and (b)] have replicability performance similar
to that of the group-dependent common harmonic waves 9 j ,
but the arithmetic mean harmonic waves 9 j do not guarantee
orthonormality [20] and thus destroy the topology of the brain
network. This nonorthogonality influences the classification
performance of the brain networks, which is demonstrated in
Section IV-C2.

2) Evaluate the Diagnostic Performance of Group-
Dependent Common Harmonic Waves: In this experiment, the
classification performance of the MHDA method is compared
with the performances of different harmonic waves (9 j , 9̃ j ,
and 9 j ) and 14 representative machine learning algorithms.
Specifically, since baseline, spectral graph, manifold regular-
ization, and multikernel methods based on vectors as input are
challenging to implement for high-dimensional brain network
classification, simple preprocessing is applied to the adjacency
matrix. Here, because the 148 × 148 adjacency matrix is
symmetric, the upper or lower triangular matrix is vectorized
as a sample, and all samples are combined into a matrix, where
each row represents a sample and each column represents
the features. Compared with the above methods, the higher
order tensor, GNN and matrix discriminant analysis methods
work directly on the adjacency matrix of the brain network
without additional preprocessing methods. The manifold met-
ric methods take the n × p dimensional harmonic waves
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Fig. 3. Replicability test results of (a) and (b) arithmetic mean harmonic waves 9 j , (c) and (d) pseudo-harmonic waves 9̃ j , and (e) and (f) group-dependent
common harmonic waves 9 j on CN (left) and AD (right) data. Among them, the color on the cortical surface reflects the number of times the replicability
tests failed.

TABLE II
CLASSIFICATION RESULTS FOR DIFFERENT HARMONIC WAVES.

ACC: ACCURACY, SEN: SENSITIVITY, SPE: SPECIFICITY

derived from the Laplacian matrix as input. In addition to
using harmonic waves as input, a testing sample can also
be stratified as the label of the group-dependent manifold
center that has the shortest geodesic distance to this testing
sample. The performance of all methods is evaluated by
calculating the classification accuracy, sensitivity, specificity,
and F-score based on fivefold cross-validation. Finally, the
classification results based on different common harmonic
waves are summarized in Table II, and the classification
results compared with the 14 approaches are summarized
in Table III. Specifically, the bolded and underlined values
in Tables II and III are the optimal and suboptimal values.

As shown in Table II, our group-dependent common har-
monic waves 9 j consistently outperform the arithmetic mean
harmonic waves 9 j and the pseudo-harmonic waves 9̃ j in
the classification tasks of CN/MCI, AD/MCI, and CN/AD.
Table II and Fig. 3(c) and (d) show that pseudo-harmonic
waves 9̃ j fail to achieve satisfactory classification perfor-
mance in all three classification tasks, mainly because of their
poor replicability and greater sensitivity to noise. Although
arithmetic mean harmonic waves 9 j in Fig. 3(a) and (b) have
replicability similar to that of our algorithm, they destroy the
topological structure of the brain network when utilizing a sim-
ple arithmetic average, thereby resulting in poor classification
performance.

Table III presents the performances of all methods for the
three classification tasks on the ADNI dataset. According
to the above experimental results, the proposed algorithm

further improves the diagnostic performance of AD compared
with its competitors. This can be attributed to the ability of
the proposed method to preserve the spatial information of
the brain network and to obtain group-dependent common
harmonic waves of the Stiefel manifold to enhance the separa-
bility of different classes. First, the three discriminative-based
methods are compared. The MHDA and MLDA methods
based on high-dimensional matrix-valued data outperform the
low-dimensional FLDA method for the three classification
tasks of ADNI. Additionally, the accuracy and sensitivity of
MHDA substantially improved compared with those of the
PML and MHA methods. These results show that the MHDA
is more effective than PML and MHA in measuring the
geodesic distance between any two Stiefel matrices. Notably,
MHDA-M achieves a slightly lower accuracy than MDHA;
however, it has higher computational efficiency (at least four
times improvement) than MDHA, as shown in Fig. 7(a)
of Section IV-F. In addition, Fig. 7(b) demonstrated that
MHDA-M is more efficient than MHDA on high-dimensional
brain network datasets.

Next, the comparison of GCNAutoencoders, BrainGCN,
and the proposed MHDA is notable. The GCNAutoencoders
method has a slightly lower classification performance than the
MHDA on the classification tasks of the brain network. These
experiments show that GCNAutoencoders is not as effective
as the proposed model when dealing with high-dimensional
small-scale brain network datasets. Moreover, the performance
of BrainGB based on GNN is comparable to that of the
proposed algorithm and higher than that of GCNAutoencoders.
This suggests that although GNNs are suitable for graph data,
the design of GNN models in practical applications should
be tailored to follow the unique nature of brain network
data. As a result, the method proposed in this article can be
compared with BrainGN for small-scale brain network data,
mainly considering the intrinsic topological properties of brain
network data.

Third, vector-based brain network classification methods,
such as M-SVM, L-SVM, and SRKDA, destroy the topology
of the brain network during data processing, resulting in
poor performance. However, the proposed method has good
classification performance, indicating that the MHDA method
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TABLE III
CLASSIFICATION RESULTS COMPARED WITH 14 REPRESENTATIVE

METHODS. ACC: ACCURACY, SEN: SENSITIVITY, SPE: SPECIFICITY

can learn brain network representations with more discrim-
inative information, ultimately improving the classification
performance.

Finally, the proposed algorithm obtains high accuracy and
sensitivity and is more convincing in the diagnosis of AD than
other algorithms. High sensitivity is indispensable for clinical
applications because the costs of misclassifying a normal
person as a patient and misclassifying a patient as a healthy
person [39] are different. Therefore, the manifold discriminant
analysis method constructed by brain network harmonic waves
is advantageous for brain network classification.

D. Scalability Analysis

According to previous studies, the effectiveness of the
proposed MHDA method in the brain network classification
of small-scale samples is observed. To show that the proposed

Fig. 4. Scalability analysis in the ADNI re-fMRI dataset.

algorithm can also handle the large-scale brain network
dataset, rs-fMRI images of 465 subjects, including 282 CN
subjects and 183 MCI subjects from the ADNI dataset, were
collected. The functional brain network generation method is
based on [40]. Here, five representative methods, including
FLDA, MLDA, MHA, GCNAutoencoders, and BrainGB, are
selected for comparison. The experimental results are shown
in Fig. 4. From Fig. 4, one can observe that the classi-
fication results of the GNN approach are not consistently
better than the proposed MHDA. Meanwhile, no significant
differences in accuracy (p = 0.110), F-score (p = 0.052)
and sensitivity (p = 0.068) are found between MHDA and
BrainGB. Specificity score of MHDA is significant higher
(p = 0.048) than BrainGB. Additionally, MHDA has a higher
accuracy, F1-score, and sensitivity than the state-of-the-art
MLDA and MHA. The results show that the proposed MHDA
model can learn topological properties of brain networks with
differentiation in large-scale data.

E. Hyperparameter Sensitivity

The hyperparameters λ1 and λ2 in our objective function (9)
play essential roles in balancing the weights of intragroup and
intergroup geometric distances. In this experiment, the effects
of different hyperparameters λ1 and λ2 on our final classifi-
cation results are investigated. Specifically, CN/AD, AD/MCI,
and CN/MCI classification experiments are performed on the
ADNI data, and then, the grid search method is applied to
find optimal hyperparameters λ1 and λ2 corresponding to the
highest ACC score in a set [0.001, 0.0015, 0.01, 0.015, 0.1].
From the experimental results shown in Fig. 5, the MHDA
has a relatively stable ACC score within a specific range.

F. Computational Complexity and Convergence Analysis

This section is dedicated to discussing the convergence and
complexity of both AO algorithm and FO algorithm separately.

According to AO algorithm, the computational complexity
of the MHDA is determined by two factors: 1) comput-
ing the individual harmonic wave 8i intragroup, which is
O(Nt1(n2 p + p3)), where t1 is the number of iterations,
and 2) computing the group-dependent common harmonic
waves 9 j intergroup. Here, the computational complexity
of (15) and (16) is O(n2 p). The corresponding complexities
of QR decomposition and exponential mapping are O(np2).
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Fig. 5. ACC performance of the proposed MHDA with respect to the varying hyperparameters λ1 and λ2 on ADNI.

Fig. 6. Convergence curve of the proposed algorithm. (a) MHDA convergence
curve. (b) MHDA-M convergence curve.

Clearly, the computational complexity of calculating 9 j is
O(t2np(n + p)), with t2 being the number of iterations. There-
fore, the primary time complexity of the proposed algorithm
is O(Nt1(n2 p+ p3)+ t2np(n+ p)). In the experiments, both
t1 and t2 are set to 100. In contrast, FO algorithm has a com-
putational complexity of O((t2+Nt1)n2 p). The complexity of
FO algorithm is evidently decreased by O(Nt1 p3

+ t2np2))

in comparison to AO algorithm. Consequently, FO algorithm
shows obvious advantages when processing high-dimensional
manifold values.

According to [27] and [28], the convergence of AO
algorithm is theoretically proven in the Supplementary
Material S1. Experimentally, the convergence curves of AO
algorithm and FO algorithm with respect to (9) are shown
in Fig. 6(a) and (b), respectively. It can be observed that
both AO algorithm and FO algorithm exhibit good con-
vergence, where FO algorithm has faster convergence than
AO algorithm.

To further compare the performance of the two proposed
optimization algorithms on Stiefel manifold, we record the
training time and accuracy of MHDA and MHDA-M on the
ADNI dataset. For each optimization algorithm, 100 training
iterations were conducted on a CPU using MATLAB 2022b.
As shown in Fig. 7(a), FO algorithm significantly reduces the
computational complexity by updating the manifold points
simply by matrix multiplication. Furthermore, we generate
100 simulated brain networks with two classification labels,
where the dimension (number of nodes) of each brain net-
work varies from 100 to 1000 at intervals of 100, to test
the influence of different brain network dimensions on the
computational times of these two optimization algorithms.
From Fig. 7(b), it is obvious that as the dimension of the brain

Fig. 7. Time cost of two optimization algorithms. (a) Classification
performance of MHDA and MHDA-M on ADNI data. (b) Training time versus
different dimension sizes.

Fig. 8. Spatial alignment with identified harmonic waves to the DMN
and SNs. Left: Nodes belonging to the DMN and SN. Middle: In the context
of CN/AD significant nodes. Right: In the context of CN/MCI significant
nodes.

network increases, FO algorithm manifests stronger computa-
tional efficiency than AO algorithm in terms of train time.
In a word, for extremely high-dimensional and large-scale
brain network datasets, we recommend FO algorithm because
it is relatively simple and has less computational time. In the
case of medium-sized datasets, AO algorithm is recommended
since it is more accurate and the computational complexity is
acceptable.

V. DISCUSSION
A. Discovering Significant Brain Regions in AD

AD is commonly associated with the DMN, while behav-
ioral variant frontotemporal dementia (bvFTD) primarily man-
ifests in the salience network (SN) [41]. These findings
provide an important option to employ structural connectivity
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Fig. 9. Spatial locations of the top-five significant brain regions corresponding to the CN/AD test (left) and CN/MCI test (right).

to identify the significant brain regions in AD. Herein, since
the individual harmonic waves are adjusted by minimizing
the intragroup geodesic distance, it is reasonable to detect
the significant difference between two groups of individual
harmonic waves through statistical methods.

First, all learned individual harmonic waves are divided
into two groups (CN/MCI or CN/AD). Then, the statistical
multivariate t-test method is applied to find the significant
brain regions related to disease in three steps: 1) two groups
(i.e., CN/AD or CN/MCI) of optimized individual harmonic
waves are obtained by the MHDA; 2) multivariate Hotelling’s
T-squared test [42] and false discovery rate (FDR) correction
are applied to these two groups to detect underlying brain
regions showing significant group differences (FDR-adjusted
p-value < 0.05); and 3) spatial alignment is performed to
obtain the spatial distribution of significant brain regions in
the DMN network and SN network, as shown in Fig. 8 with
the color bar representing the FDR-adjusted p-value. The
CN/AD and CN/MCI groups had 19 and 11 significant nodes
aligned with the DMN, respectively, while only one and three
significant nodes were aligned with the SN. Furthermore, the
CN/AD test has more matching points than the CN/MCI test
on the DMN and less on the SN, which is consistent with the
findings of the AD study.

Next, whether the top significant brain regions identified
by our methods are closely relevant to the progression of
the neurodegenerative disorder is investigated. The top-five
significant brain regions found by the above method are
mapped onto the cortical surface, as shown in Fig. 9. In Fig. 9,
the top-five significant nodes of AD are observed mainly in
the angular, subparietal-sulcus, postdorsal, and rectus regions,
where bilateral angular gyri (core DMN hubs) are thought to
be engaged in the global integration of information in the brain
and to participate in the close interaction of large-scale brain
networks [43], while both the postdorsal and rectus gyri play
essential roles in recognition, cognition, and application [44].
The top-five MCI brain regions are mainly concentrated in
the subparietal-sulcus, frontopolar, and precuneus regions.
Among them, the frontopolar and precuneus regions have been
reported to be associated with early signs of AD [45], [46].
The subparietal region is a highly significant brain region in

both AD and MCI, and this region plays a crucial role in face
recognition and related scene memory [47].

B. Limitations and Future Work

The proposed MHDA method aims to address the hetero-
geneity across brain networks by generating group-dependent
common harmonic waves. Nonetheless, limitations exist in the
approach.

1) The method solely relies on using individual harmonic
waves extracted from brain networks for the early diag-
nosis of neurodegenerative diseases, without utilizing
other auxiliary information to enhance the discriminative
power of the model, such as empirical biomarkers like
amyloid deposition. Future work will investigate the use
of joint empirical biomarkers and brain networks for
more precise diagnosis of neurodegenerative diseases.

2) Two hyperparameters λ1 and λ2 exist in the model.
As a result, a grid search process is necessary for dif-
ferent classification tasks, which increases the algorithm
time complexity. In future work, an adaptive variable
parameter will be designed to facilitate quantitative
analysis of intragroup and intergroup differences without
considering hyperparameters.

VI. CONCLUSION

This article proposes a model for brain network classifi-
cation called the MHDA, which provides a new solution for
the early diagnosis of neurodegenerative diseases. The core of
the proposed method extends the linear discriminant analysis
from Euclidean space to the Stiefel manifold space through
a series of manifold algebra operations on brain network
harmonic waves. Each brain network can be represented by
harmonic waves fully retaining its topological information.
The intergroup and intragroup geodesic distances between
different groups of individual harmonic waves are constructed
through the manifold optimization scheme to discover the
group-dependent common harmonic waves. Unlike the exist-
ing brain network analysis methods, the harmonic waves
learned by the proposed method can effectively reflect the
specific characteristics of the brain network and quantify the
differences in neuropathological disease between individuals.
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Meanwhile, two Riemannian optimization algorithms are pre-
sented in this article to enhance the generalizability of the pro-
posed model in diverse scenarios. The power of the proposed
method in stratifying CN, MCI, and AD is evaluated. Higher
classification accuracy, sensitivity, specificity, and F-score are
achieved by the proposed method compared with two common
harmonic-based methods and 14 existing machine learning
algorithms on brain network data. Furthermore, the learned
harmonic waves reveal some putative biomarkers associated
with AD development at the preclinical stage.
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